ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Rodrigo Antunes, Laëtitia Frances, Marco Incelli, Alessia Santucci
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 257-261
Technical Paper | doi.org/10.1080/15361055.2019.1705748
Articles are hosted by Taylor and Francis Online.
One of the reference technologies for the fuel cycle of fusion machines is Pd/Ag membranes. This technology is proposed to be implemented in tritium recovery systems because of their exclusive selectivity toward molecular hydrogen isotopes (Q = H, D, T). To perform scaling-up studies for the Tritium Extraction and Removal System of the European DEMOnstration fusion power reactor (DEMO) with a solid blanket, a one-dimensional simulation code was recently developed and successfully validated with experiments. This code relies on different operational (e.g., feed pressure and temperature), geometrical (e.g., permeator length), and membrane-intrinsic (e.g., Q2 permeability) parameters given as input. The main outcome is the Q2 permeation efficiency, defined as the Q2 permeate–to–feed flow ratio. Because of the low concentrations of Q2 expected at the He stream purging the solid blanket, the surface effects are expected to be important, decreasing the separation efficiency of the Pd/Ag permeators. In this paper the role of surface effects on the permeation efficiency is studied for a DEMO-relevant scenario (feeding mixture: HT/H2/He). Moreover, a sensitivity study is also given demonstrating the high impact of the permeation area, temperature, and feed pressure on the permeation efficiency of HT.