ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Mingzhong Zhao, Moeko Nakata, Fei Sun, Yuji Hatano, Yoji Someya, Kenji Tobita, Yasuhisa Oya
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 246-251
Technical Paper | doi.org/10.1080/15361055.2019.1705727
Articles are hosted by Taylor and Francis Online.
The deuterium (D) permeation behavior for 1 displacement per atom Fe2+ damaged tungsten (W) was studied by the gas-driven permeation method and compared with undamaged W. The results of thermal desorption spectroscopy showed that dislocation loops and voids were formed in damaged W. It was found that the D permeation behavior in W was affected by irradiation defects. The effective diffusivity and permeability in the damaged W were lower than that in undamaged W. However, the difference in effective diffusivity and permeability between the undamaged sample and the damaged sample was reduced with increasing the heating temperature. Under 965 K, which was enough for D detrapping from voids, the permeability for damaged W was consistent with that for undamaged W.