ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Mingzhong Zhao, Moeko Nakata, Fei Sun, Yuji Hatano, Yoji Someya, Kenji Tobita, Yasuhisa Oya
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 246-251
Technical Paper | doi.org/10.1080/15361055.2019.1705727
Articles are hosted by Taylor and Francis Online.
The deuterium (D) permeation behavior for 1 displacement per atom Fe2+ damaged tungsten (W) was studied by the gas-driven permeation method and compared with undamaged W. The results of thermal desorption spectroscopy showed that dislocation loops and voids were formed in damaged W. It was found that the D permeation behavior in W was affected by irradiation defects. The effective diffusivity and permeability in the damaged W were lower than that in undamaged W. However, the difference in effective diffusivity and permeability between the undamaged sample and the damaged sample was reduced with increasing the heating temperature. Under 965 K, which was enough for D detrapping from voids, the permeability for damaged W was consistent with that for undamaged W.