ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
TVA and Entra1 to deploy 6 GW of NuScale SMRs
The Tennessee Valley Authority and Houston, Texas–based energy production company Entra1 Energy recently announced the signing of an agreement to collaborate on the deployment of six new nuclear power plants equipped with NuScale small modular reactors.
Sung Nam Lee, Nam-Il Tak
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 238-245
Technical Paper | doi.org/10.1080/15361055.2019.1705725
Articles are hosted by Taylor and Francis Online.
The High-Temperature Gas-cooled Reactor (HTGR) has been selected as one of the next-generation nuclear power plants because of its passive safety features. The Korea Atomic Energy Research Institute (KAERI) has been studying how to utilize HTGR efficiently and safely. The HTGR uses graphite as a moderator and helium as a coolant. Once tritium is produced, it is released into the coolant; once released from the core, tritium travels within the primary loop. Because the coolant is gas phase, it is easy to transport to other systems. While it circulates in the primary loop, tritium is involved in processes that include leakage, purification, and permeation. KAERI has been developing a tritium behavior analysis code named TRitium Overall Phenomena analYsis (TROPY) to analyze tritium transport and predict the amount of tritium in the loop in the HTGR core. In this paper, the functions of the TROPY code are introduced, and the amount of tritium in each loop and the amount released into the product hydrogen from the MHTGR 350-MW(thermal) core are explained.