ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yannick Nicolas Hörstensmeyer, Silvano Tosti, Alessia Santucci, Giacomo Bruni
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 232-237
Technical Paper | doi.org/10.1080/15361055.2019.1705690
Articles are hosted by Taylor and Francis Online.
Palladium alloy permeators are foreseen for the retrieval of hydrogen in the fusion fuel cycle of the European DEMO power plant. Driven by a pressure gradient, unburned fuel permeates through a thin-walled metallic membrane within the permeator while other gases cannot pass this barrier. With a theoretically unlimited selectivity with regard to nonhydrogenic species, a very high proportion of unburned fuel can be recovered in a continuous process from the exhaust gas and reused after a very short time. A potential candidate for the design of such a permeator consists of a tube (l = 500 mm, d = 10 mm) with a 125-μm-thick, self-supporting membrane made of a palladium-silver alloy all combined in the shape of a so-called finger-type design. A two-stage process then connects several of these permeators in parallel and in series to match the required throughput of DEMO during plasma operation at a given degree of separation. As the first design point in the scope of the current preconceptual design phase, a model was developed using the commercial software ASPEN Custom Modeler to estimate important parameters such as the tritium inventory and the scale of the permeator unit. How the hydrogen pressure profile is calculated over the length of a permeator using the Sieverts’ Law and the Finite Volume Method is thoroughly described. As a result, the integral performance of the combined permeators is presented as well as all important boundary conditions and assumptions that led to it. For the current DEMO baseline scenario, the total number of permeators of the abovementioned shape is found to be about 50.