ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
U.K. community withdraws from disposal facility siting process
The community of Lincolnshire in eastern England voted on June 3 to withdraw from consideration to host a deep geologic repository for high-level radioactive waste. Lincolnshire was one of three communities the U.K. government’s Nuclear Waste Services identified in January as possible hosts for a repository.
C. Postolache, A. Antohe, C. S. Tuta, G. Bubueanu, M. R. Ioan
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 202-208
Technical Paper | doi.org/10.1080/15361055.2019.1704109
Articles are hosted by Taylor and Francis Online.
Annual tritium exposures can be reconstructed for long time periods by analyzing radioactive concentrations in tree rings near nuclear facilities that can release tritiated water (HTO) to the environment. Since the mass of analyzed samples is on the order of milligrams, usual methods such as liquid scintillation counting cannot be applied. The recommended method comprises thermal decomposition of the milligram-sized samples, reduction of the resulting HTO to tritiated hydrogen, quantitative absorption of titanium hydride (TiHT) in titanium powder, and determination of the H/T ratio using an accelerator mass spectrometer method. This paper describes the method for obtaining TiHT standards with different H/T isotopic ratios for calibration of a mass spectrometer detector.