ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Zongbiao Ye, Wenyao Yang, Lei Shu, Zhijun Wang, Qiancheng Liu, Qiang Yan, Jianjun Wei, Kun Zhang, Fujun Gou
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 157-162
Technical Paper | doi.org/10.1080/15361055.2019.1704596
Articles are hosted by Taylor and Francis Online.
The corrosion behavior of Type 316L stainless steel in stagnating liquid Li under an elevated-temperature environment was investigated using a scanning electron microscope and an energy dispersive X-ray detector and self-designed laser-induced breakdown spectroscopy. A nonuniform and cell-like branched structure separated by distinct boundaries was observed, and a porous and rugged corroded layer was formed on the surface of the substrate after 500 h exposing 350°C liquid Li. This showed that the intensity of the Cr element on the superficial corroded sample decreased significantly when the depth reached ~2.8 μm and then was gradually restored in the range of ~5.6 μm. Meanwhile, the intensity of the Li element revealed consistent reduction to zero at ~4.0 μm. This study disclosed element transfer and penetration along a depth in the corrosion process between the liquid lithium and steel matrix.