ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Renato Vinicius A. Marques, Marcia Saturnino, Felipe Martins, Carlos Eduardo Velasquez Cabrera, Claubia Pereira Bezerra Lima, Maria Auxiliadora Fortini Veloso, Antonella Lombardi Costa
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 145-152
Technical Paper | doi.org/10.1080/15361055.2019.1704594
Articles are hosted by Taylor and Francis Online.
Lead-bismuth eutectic is used as a coolant for the fusion-fission hybrid system (FFS) based on a tokamak that enhances the transmutation of transuranic nuclides. However, this coolant does not produce enough tritium to supply the fusion reactions of the system. Therefore, the aim of this work is to evaluate the insertion of tritium breeder layers (TBLs) on the FFS to enhance tritium production. The analyzed materials for tritium production were beryllium, boron, and lithium alloys. The results indicate the most suitable material for tritium production depends on the TBL location. The results also indicate that there is a strong dependency on the position of the TBL affecting the neutronic parameters and nuclide transmutation such as criticality and fuel depletion. The reaction rates for tritium production and fuel composition after a fuel burnup were analyzed using the Monte Carlo N-Particle 5 (MCNP5) and MONTEBURNS codes.