ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Renato Vinicius A. Marques, Marcia Saturnino, Felipe Martins, Carlos Eduardo Velasquez Cabrera, Claubia Pereira Bezerra Lima, Maria Auxiliadora Fortini Veloso, Antonella Lombardi Costa
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 145-152
Technical Paper | doi.org/10.1080/15361055.2019.1704594
Articles are hosted by Taylor and Francis Online.
Lead-bismuth eutectic is used as a coolant for the fusion-fission hybrid system (FFS) based on a tokamak that enhances the transmutation of transuranic nuclides. However, this coolant does not produce enough tritium to supply the fusion reactions of the system. Therefore, the aim of this work is to evaluate the insertion of tritium breeder layers (TBLs) on the FFS to enhance tritium production. The analyzed materials for tritium production were beryllium, boron, and lithium alloys. The results indicate the most suitable material for tritium production depends on the TBL location. The results also indicate that there is a strong dependency on the position of the TBL affecting the neutronic parameters and nuclide transmutation such as criticality and fuel depletion. The reaction rates for tritium production and fuel composition after a fuel burnup were analyzed using the Monte Carlo N-Particle 5 (MCNP5) and MONTEBURNS codes.