ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yuki Edao, Yasunori Iwai
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 135-140
Technical Paper | doi.org/10.1080/15361055.2019.1704572
Articles are hosted by Taylor and Francis Online.
A passive catalytic reactor without heating is required to enhance the safety of a fusion facility. A precious metal catalyst without heating is not suitable to oxidize tritium under conditions of low hydrogen concentration and room temperature. In addition, under a moisture condition, tritium oxidation of a precious metal catalyst drops drastically since moisture adsorbs active sites on the surface of the catalyst. Hence, as a method of tritium oxidation under a moisture condition at room temperature, we have focused on bacterial oxidation of tritium by hydrogen-oxidizing bacteria in natural soil to realize a passive reactor. In this study, we investigated the effect of hydrogen concentration on tritium oxidation by hydrogen-oxidizing bacteria in natural soils to understand the characteristic of tritium oxidation by hydrogen-oxidizing bacteria from the viewpoint of engineering. In our experiment, efficiency of tritium oxidation by a natural soil was obtained at room temperature in the range of hydrogen concentration from 0.5 to 10 000 parts per million (ppm) under a moisture condition. The efficiency of tritium oxidation was the highest at a hydrogen concentration of 0.5 ppm, which equals the value of the hydrogen concentration in air. Our results show that hydrogen-oxidizing bacteria could efficiently oxidize tritium with a low concentration of hydrogen, at room temperature, with high moisture. This showed a tendency opposite to a metal catalyst. A bioreactor using hydrogen-oxidizing bacteria complemented a conventional catalytic reactor using a precious metal catalyst since hydrogen-oxidizing bacteria could oxidize tritium efficiently with a low concentration of hydrogen, at room temperature, with high moisture.