ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Zhanlei Wang, Kaigui Zhu, Wei Wang, Yongchu Rao, Xiaoqiu Ye, Yakun Guo, Jing Yan, Chang An Chen
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 102-109
Technical Paper | doi.org/10.1080/15361055.2019.1693192
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope behavior in tungsten coated on reduced activation ferritic/martensitic (RAFM) steels such as China low activation martensitic (CLAM) steel has attracted more attention in the fusion engineering research community. This paper is mainly devoted to the investigation of the effect of tungsten coating on deuterium permeation and retention behavior in RAFM steels. The permeability and diffusion coefficients of CLAM, W-CLAM, and W were determined by gas-driven permeation (GDP) tests followed by thermal desorption spectroscopy to measure deuterium retention. It was found that the observed deuterium permeability and diffusivity of the composite W-CLAM specimen was reduced to about ~60% of the pure CLAM steel, whereas deuterium retention increased, evidently owing to the W coating on the surface that caused the slower release of D into the environment and increased of the effective surface area. In addition, a key finding was that the lath martensite–coarsened and more precipitate phase was found, which may be due to the migration of lath interface during the GDP test.