ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE lays out fuel cycle goals in RFI to states
The Department of Energy has issued a request for information inviting states to express interest in hosting Nuclear Lifecycle Innovation Campuses. According to the DOE, the proposed campuses could support work across the nuclear fuel life cycle, with a primary focus on fuel fabrication, enrichment, spent fuel reprocessing or recycling, separations, and radioactive waste management.
The DOE said the RFI marks the first step toward potentially establishing voluntary federal-state partnerships designed to build a coherent, end-to-end nuclear energy strategy for the country.
Bin Chen, Jiangang Li, Yanlan Hu, Teng Wang, Chao Zhou
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 95-101
Technical Paper | doi.org/10.1080/15361055.2019.1690927
Articles are hosted by Taylor and Francis Online.
High-temperature superconductor (HTS) current leads are important components of the EAST and CFETR tokamaks, which are responsible for operating the high parametric current. HTS current leads are made of Bi-2223/Ag-Au alloy tapes, which have the characteristics of slow quench propagation speed and weak quench signal. Traditional thermometers are easily damaged by the high voltage from the current leads, and the terminal voltage signal cannot reflect the hot spot changes of current leads in real time. In this paper, a novel quench detection method based on optical frequency domain reflection technology is proposed. Temperature variations of HTS can be obtained in real time by demodulating the Rayleigh scattered spectrum from the distributed optical fiber attached to the surface of HTS stacks. This paper describes a quenching experiment for one pair of 1-kA small current leads. The external thermal disturbance is increased to explore the quench propagation of HTS current leads under the condition of a self-field, 77 to 80 K air and conduction combined cooling method. From the experimental results, the temperature distribution map of the whole HTS lead is obtained. Compared with the quench voltage, the spectral shift of the fiber appeared to be about 2 s ahead, and the hot spot position can be located with 1-cm accuracy.