ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Qingyi Tan, Xueyu Gong, Qianhong Huang, Yijun Zhong
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 88-94
Technical Paper | doi.org/10.1080/15361055.2019.1680039
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance heating is a reliable tool for high-power and long-pulse operation in fusion reactors. However, a sudden increase in the reflected radio-frequency (RF) power poses serious problems such as L- to H-mode transition or edge-localized modes that must be solved for future fusion reactors. It is necessary to place an impedance matching system between the RF generator and antenna to mitigate the adverse effects of the variations. The idea of a fast-response ferrite stub tuner was developed to trace the load variation of the antenna. This study presents theoretical calculation of the suitable normalized mechanical length of the ferrite stub tuner using transmission line theory and numerically analyzes the impedance matching parameters of the single ferrite stub antenna system. The present study demonstrates the feasible investigation of the magnetic field modulation, which can lead to the effective reduction in the reflected RF power fraction during the large change in plasma resistance.