ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Qingyi Tan, Xueyu Gong, Qianhong Huang, Yijun Zhong
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 88-94
Technical Paper | doi.org/10.1080/15361055.2019.1680039
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance heating is a reliable tool for high-power and long-pulse operation in fusion reactors. However, a sudden increase in the reflected radio-frequency (RF) power poses serious problems such as L- to H-mode transition or edge-localized modes that must be solved for future fusion reactors. It is necessary to place an impedance matching system between the RF generator and antenna to mitigate the adverse effects of the variations. The idea of a fast-response ferrite stub tuner was developed to trace the load variation of the antenna. This study presents theoretical calculation of the suitable normalized mechanical length of the ferrite stub tuner using transmission line theory and numerically analyzes the impedance matching parameters of the single ferrite stub antenna system. The present study demonstrates the feasible investigation of the magnetic field modulation, which can lead to the effective reduction in the reflected RF power fraction during the large change in plasma resistance.