ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Jie Li, Jie Zhang, Yang Qiu, Liangliang Zhang, Changle Liu, Xiang Gao
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 70-77
Technical Note | doi.org/10.1080/15361055.2019.1610320
Articles are hosted by Taylor and Francis Online.
The breeding material ratio (BMR) makes a significant impact on the tritium breeding ratio (TBR) to the fusion blanket due to the material fraction influence inside the blanket interior. The qualitative study on the BMR-related TBR issues are focused on the two cases of water-cooled blanket modules: the mixture blanket structure and the multilayer blanket case. The study indicates that TBR is a unique value in accordance with one BMR value in the mixture blanket. Moreover, a systematic scheme on TBR estimation based on multiple variable combinations is carried out for the multilayer model. It is found that the blanket local TBR would vary along with BMR increasing, and that high TBRs are obtained at BMR in the range of 0.08 to 0.12 for the two cases. In particular, the maximum TBR occurs when the BMR is in the range of 0.09 to 0.1. Furthermore, TBR variation due to BMR change induced by blanket macrofactors, like material type, material ratio, material structure, etc., is defined using the universal function solution. These results would be more important to the breeding blanket design and optimization since they would affect the blanket structure concepts and their TBR estimations. Hence, the blanket BMR issues are important concerns on the road toward an advanced blanket system for the Chinese Fusion Engineering Test Reactor (CFETR) at the present pre-engineering stages.