ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
G. M. Wallace, C. E. Kessel, J. Hosea, R. Majeski, J. R. Wilson, T. Rognlien, L. M. Waganer
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 53-61
Technical Paper | doi.org/10.1080/15361055.2019.1629253
Articles are hosted by Taylor and Francis Online.
This paper addresses the potential impact of liquid metal (LM) plasma-facing components (PFCs) for the heating and current drive (H&CD) actuators on the Fusion Nuclear Science Facility (FNSF) fusion reactor. Fulfilling the high neutron fluence mission of the FSNF requires steady-state operation for extremely long pulses (months to years) between maintenance opportunities. The use of LM as a surface material is one strategy for extending the lifetime of the PFCs for long pulse operation in a high heat flux, high neutron flux environment like that of the FNSF. Liquid metal PFCs provide possible pathways forward on many difficult aspects of a fusion reactor; however, the LM PFCs also bring new challenges and unknowns with respect to the H&CD actuators needed to provide steady-state operation. The development of LM-compatible materials for radio-frequency (RF) antennas will be critical, as well as strategies for minimizing contamination of antenna surfaces and the core plasma. Successful deployment of LM PFCs on the FNSF will require operational experience with RF in a LM environment both on test stands and in an integrated toroidal environment.