ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. M. Wallace, C. E. Kessel, J. Hosea, R. Majeski, J. R. Wilson, T. Rognlien, L. M. Waganer
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 53-61
Technical Paper | doi.org/10.1080/15361055.2019.1629253
Articles are hosted by Taylor and Francis Online.
This paper addresses the potential impact of liquid metal (LM) plasma-facing components (PFCs) for the heating and current drive (H&CD) actuators on the Fusion Nuclear Science Facility (FNSF) fusion reactor. Fulfilling the high neutron fluence mission of the FSNF requires steady-state operation for extremely long pulses (months to years) between maintenance opportunities. The use of LM as a surface material is one strategy for extending the lifetime of the PFCs for long pulse operation in a high heat flux, high neutron flux environment like that of the FNSF. Liquid metal PFCs provide possible pathways forward on many difficult aspects of a fusion reactor; however, the LM PFCs also bring new challenges and unknowns with respect to the H&CD actuators needed to provide steady-state operation. The development of LM-compatible materials for radio-frequency (RF) antennas will be critical, as well as strategies for minimizing contamination of antenna surfaces and the core plasma. Successful deployment of LM PFCs on the FNSF will require operational experience with RF in a LM environment both on test stands and in an integrated toroidal environment.