ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
S. Segantin, R. Testoni, Z. Hartwig, D. Whyte, M. Zucchetti
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 45-52
Technical Paper | doi.org/10.1080/15361055.2019.1629252
Articles are hosted by Taylor and Francis Online.
Progress in technological fields such as high-temperature superconductors, additive manufacturing, and innovative materials has led to new scenarios and to a second generation of fusion reactor designs. The new Affordable Robust Compact (ARC) fusion reactor, which compared to other designs meets its goal to achieve fusion energy in a less expensive, smaller but even more powerful, faster way, has been designed at Massachusetts Institute of Technology. In order to define ARC’s role in future electricity grids, a feasibility investigation of the load-following concept has been carried out, starting on ARC’s vacuum vessel (VV), which is the component closest to the plasma. Finite element analysis models have been designed, and thermomechanical analyses have been conducted. In this framework thermal fatigue and creep remain the main issues. This study identifies and verifies a suitable temperature range for the VV coolant. Indeed, it is found to satisfy both requirements for the lifetime of the structural material and thermodynamic efficiency optimization.