ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Renjing Fan, Peng Fu, Jun Tao, Ge Gao, Liansheng Huang, Zhiquan Song, Jinchao Li, Yulong Ye
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 21-28
Technical Paper | doi.org/10.1080/15361055.2019.1610318
Articles are hosted by Taylor and Francis Online.
The ITER poloidal field (PF) coil power supply system consists of 14 basic converter units that feed six superconducting coils. The converter unit is the complicated, challenging, and unique system to realize four-quadrant operation compatible with the superconductive load and the demand for plasma control. This paper describes the final design of the control strategies, which are implemented in the local controller of the PF converter system. They are zero crossing current control strategy in circulating operation mode, current balance control strategy in parallel operation mode, and hysteresis band control strategy in mode transition. In addition, the performance of the control system is demonstrated by the analysis, and the control strategies are validated by the simulations and corresponding tests.