ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
George Larsen, Simona E. Hunyadi Murph, Kaitlin Coopersmith, Lucas Mitchell
Fusion Science and Technology | Volume 76 | Number 1 | January 2020 | Pages 13-20
Technical Paper | doi.org/10.1080/15361055.2019.1598205
Articles are hosted by Taylor and Francis Online.
Reduction-oxidation cycles of metals can be harnessed to create a reusable tritiated water processing system. The concept is straightforward; a tritium-contaminated steam passes over a hot metal bed converting the metal to a metal oxide and liberating hydrogen isotopes for further processing and isotope separation. The bed is regenerated by converting the metal oxide back to a bare metal using protium gas, creating a clean water stream. Free oxygen is not produced during the cyclical process, making it safe for use in a hydrogen processing facility, and the only by-product is detritiated water. Porous zero valent iron (p-ZVI) has been identified as an ideal candidate material for this process due to its low cost, unique morphology, and favorable thermodynamics. Therefore, investigations of p-ZVI were conducted to better understand how a bed composed of such material would behave in a tritium processing facility. The thermal and physical properties were assessed, along with cycling and isotope effects. The results indicate that p-ZVI beds could serve as a low-cost, reusable system for the treatment of water in tritium processing facilities.