ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Teruya Tanaka, Hiroyuki Noto, Fuminobu Sato, Yoshimitsu Hishinuma, Hiroyuki A. Sakaue, Masahito Yoshino
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1076-1083
Technical Paper | doi.org/10.1080/15361055.2019.1658039
Articles are hosted by Taylor and Francis Online.
To examine the impact of nuclear transmutation in K-type and N-type thermocouples on temperature measurements in a fusion reactor, thermocouples with altered compositions were fabricated, and their responses were obtained at up to 800°C. The compositions of the thermocouples were altered according to transmutation calculations simulating the 3.5-, 4.6-, and 7-year use at the first wall and 40-year use at the front surface of the radiation shield. Comparison of the responses with commercial thermocouples at 800°C showed that the K-type and N-type thermocouples with altered composition simulating the 7-year use at the first wall indicate 20% to 25% lower temperatures. In this condition, the weight ratio of additive powders for simulation of transmuted elements was ~3%. The differences of responses between the commercial thermocouples and thermocouples simulating transmutation are dependent on the weight ratio of the additive powders. The present data could be used for estimation of response degradation of thermocouples used for long-term operation in a fusion reactor.