ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Teruya Tanaka, Hiroyuki Noto, Fuminobu Sato, Yoshimitsu Hishinuma, Hiroyuki A. Sakaue, Masahito Yoshino
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1076-1083
Technical Paper | doi.org/10.1080/15361055.2019.1658039
Articles are hosted by Taylor and Francis Online.
To examine the impact of nuclear transmutation in K-type and N-type thermocouples on temperature measurements in a fusion reactor, thermocouples with altered compositions were fabricated, and their responses were obtained at up to 800°C. The compositions of the thermocouples were altered according to transmutation calculations simulating the 3.5-, 4.6-, and 7-year use at the first wall and 40-year use at the front surface of the radiation shield. Comparison of the responses with commercial thermocouples at 800°C showed that the K-type and N-type thermocouples with altered composition simulating the 7-year use at the first wall indicate 20% to 25% lower temperatures. In this condition, the weight ratio of additive powders for simulation of transmuted elements was ~3%. The differences of responses between the commercial thermocouples and thermocouples simulating transmutation are dependent on the weight ratio of the additive powders. The present data could be used for estimation of response degradation of thermocouples used for long-term operation in a fusion reactor.