ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1058-1063
Technical Paper | doi.org/10.1080/15361055.2019.1610308
Articles are hosted by Taylor and Francis Online.
In this work, Aluminum 6061-T6 samples were subjected to MIL-DTL-5541F type-I, class-3 anodic coatings, where a yellow irradiate finish was achieved. Both chromate-conversion coatings (CCCs) and unmodified samples were exposed to deuterium-tritium (PT = 0.51 atm) gas for 24 h at room temperature. Following loading, the samples were subjected to one of two desorption techniques: temperature-programmed desorption or a surface stripping technique. The results show that chromic-acid anodizing of aluminum dramatically increases the total quantity of tritium retained by the treated surface as compared to unmodified aluminum. X-ray photoelectron spectroscopy and scanning electron microscopy studies of both treated aluminum and unmodified samples indicate that the CCCs contain significant quantities of hydrated chromium. Using transmission electron microscopy, the surface is shown to have significant cracking and fracturing of the film and leads to a highly grained and porous surface. Such surface defects coupled with the vast quantity of hydration sites are likely reasons for the increased retained tritium inventory observed for CCC samples. Because of the physical and chemical properties of unmodified CCC samples, they are not suitable for use in tritium environments.