ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1058-1063
Technical Paper | doi.org/10.1080/15361055.2019.1610308
Articles are hosted by Taylor and Francis Online.
In this work, Aluminum 6061-T6 samples were subjected to MIL-DTL-5541F type-I, class-3 anodic coatings, where a yellow irradiate finish was achieved. Both chromate-conversion coatings (CCCs) and unmodified samples were exposed to deuterium-tritium (PT = 0.51 atm) gas for 24 h at room temperature. Following loading, the samples were subjected to one of two desorption techniques: temperature-programmed desorption or a surface stripping technique. The results show that chromic-acid anodizing of aluminum dramatically increases the total quantity of tritium retained by the treated surface as compared to unmodified aluminum. X-ray photoelectron spectroscopy and scanning electron microscopy studies of both treated aluminum and unmodified samples indicate that the CCCs contain significant quantities of hydrated chromium. Using transmission electron microscopy, the surface is shown to have significant cracking and fracturing of the film and leads to a highly grained and porous surface. Such surface defects coupled with the vast quantity of hydration sites are likely reasons for the increased retained tritium inventory observed for CCC samples. Because of the physical and chemical properties of unmodified CCC samples, they are not suitable for use in tritium environments.