ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
M. Sharpe, C. Fagan, W. T. Shmayda
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1053-1057
Technical Paper | doi.org/10.1080/15361055.2019.1644136
Articles are hosted by Taylor and Francis Online.
The distribution of tritium in the near surface of Type 316 stainless steel has been measured using a combination of a zinc chloride (ZnCl2) wash and acid etching with diluted aqua regia. This method improves upon etching measurements reported in the literature: Results show depth resolutions of ~10 nm using the diluted aqua regia. The ZnCl2 wash results show very high surface concentration (~1.5 × 1013 Bq/cm3), which decreases by a factor of 106 after etching to a depth of ~10 μm. Further, the tritium concentrations in the near surface (<10 μm) of unmodified stainless steel samples do not change significantly over the course of 233 days, which indicates a quasi-equilibrium state has been reached. Tritium migration to the surface from the subsurface region was measured by etching a sample and then storing it in air for 2 to 4 days. After storing in air, the surface concentrations increased a thousandfold and rapidly decreased to base levels after etching an additional ~2 μm. These measurements indicate that perturbing the quasi-equilibrium concentration profile results in tritium migration to the surface in order to reestablish the prior equilibrium state.