ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
DOE prepares for transition of Savannah River Site management
Personnel from the Department of Energy’s Office of Environmental Management and the National Nuclear Security Administration recently gathered to discuss plans for the upcoming transfer of landlord responsibility for the Savannah River Site in South Carolina.
Marco Riva, Alice Ying, Mohamed Abdou, Mu-Young Ahn, Seungyon Cho
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1037-1045
Technical Paper | doi.org/10.1080/15361055.2019.1643691
Articles are hosted by Taylor and Francis Online.
In this paper, dynamic tritium flow rates and inventories of the outer fuel cycle (OFC) of a DEMOnstration nuclear fusion reactor (DEMO) are analyzed to determine the initial amount of tritium that has to be prepared to sustain plasma operation at reactor start-up, i.e., until tritium bred in blankets is extracted and available. The main components of the helium coolant ceramic reflector tritium breeding system were modeled in detail with the use of COMSOL Multiphysics and integrated into a system-level model within the MATLAB/Simulink platform to simulate OFC tritium streams. Furthermore, a control volume analysis was derived to incorporate the OFC flow rates calculated with the dynamic integrated numerical tool for initial start-up tritium inventory (ISTI) analysis. We found that the tritium processing time of the tritium extraction system (TES) plays a critical role for ISTI assessment. On one hand, for batchwise technology such as adsorption/regeneration columns, the OFC-attributed ISTI is ~2.6 kg calculated for a 3-GW fusion power reactor. On the other hand, online extraction techniques such as catalytic membrane reactors offer continuous operation and result in ~10 to 250 g of ISTI depending on the TES efficiency and breeder material tritium residence time. The helium coolant system (HCS) line has a minor impact on ISTI since tritium retention in HCS components is orders of magnitude lower than the TES line when a tungsten plasma-facing-component coating is implemented.