ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
January 2024
Latest News
Eisenhower’s “Atoms for Peace” at 70
Seventy years ago to the day, President Dwight D. Eisenhower gave his historic address to the United Nations General Assembly in New York City. (See December 2023 Nuclear News's “Leaders” column to read the reflections of Kathryn Huff, the Department of Energy’s assistant secretary for nuclear energy, on the speech’s anniversary.)
C. Koehly, L. Bühler, C. Mistrangelo
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 1010-1015
Technical Paper | doi.org/10.1080/15361055.2019.1607705
Articles are hosted by Taylor and Francis Online.
The water-cooled lead lithium (WCLL) blanket is one of the European concepts for a Demonstration nuclear fusion reactor (DEMO). The spatial distribution of the water-cooling pipes inside the liquid metal blanket breeder zone is a critical issue since efficient heat removal from the liquid metal has to be ensured, avoiding local hot spots in the fluid or in blanket walls. Convective motion, driven by density gradients due to volumetric heat sources in the liquid breeder and heat removal by cooling pipes, is affected by magnetohydrodynamic interactions of the electrically conducting lead lithium with the external magnetic field. For the recent complex design of the DEMO WCLL blanket, prediction of the liquid metal flow is quite difficult. Preliminary numerical and experimental studies are necessary to determine the flow distribution resulting from the combined interaction of electromagnetic forces, buoyancy, and pressure. A test section based on a simplified model geometry supported by preliminary numerical simulations has been designed for experiments in the MEKKA laboratory at the Karlsruhe Institute of Technology and is presented in this paper.