ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Paul W. Humrickhouse, Brad J. Merrill, Su-Jong Yoon, Lee C. Cadwallader
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 973-1001
Technical Paper | doi.org/10.1080/15361055.2019.1658464
Articles are hosted by Taylor and Francis Online.
In this work we consider some of the safety implications of using liquid metal (LM) plasma-facing components (PFCs) in future fusion reactors. Candidate LMs include lithium, tin, and tin-lithium alloys, and we consider a modified Fusion Nuclear Science Facility design with a dual-cooled lead-lithium blanket and fast-flowing LM first wall and divertor consisting of each of these aforementioned metals. Tin and tin-lithium PFCs are found to have little impact on the potential source terms, including tritium and activation product releases during an accident as well as tritium permeation losses during normal operation, relative to the lead-lithium blanket. For a lithium PFC, chemical reactivity and high tritium inventories are additional concerns. We outline some necessary safety precautions for lithium systems and review the relevant operating experience of sodium-cooled fission reactors. Design constraints to keep the tritium inventory low in such a lithium system are outlined, including in the tritium extraction system, which will have to rely on different techniques than envisioned for other LMs such as PbLi, Sn, and SnLi, which have a much lower tritium solubility than lithium. Development of such extraction systems is significant research and development needed prior to deployment of lithium PFCs.