ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Paul W. Humrickhouse, Brad J. Merrill, Su-Jong Yoon, Lee C. Cadwallader
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 973-1001
Technical Paper | doi.org/10.1080/15361055.2019.1658464
Articles are hosted by Taylor and Francis Online.
In this work we consider some of the safety implications of using liquid metal (LM) plasma-facing components (PFCs) in future fusion reactors. Candidate LMs include lithium, tin, and tin-lithium alloys, and we consider a modified Fusion Nuclear Science Facility design with a dual-cooled lead-lithium blanket and fast-flowing LM first wall and divertor consisting of each of these aforementioned metals. Tin and tin-lithium PFCs are found to have little impact on the potential source terms, including tritium and activation product releases during an accident as well as tritium permeation losses during normal operation, relative to the lead-lithium blanket. For a lithium PFC, chemical reactivity and high tritium inventories are additional concerns. We outline some necessary safety precautions for lithium systems and review the relevant operating experience of sodium-cooled fission reactors. Design constraints to keep the tritium inventory low in such a lithium system are outlined, including in the tritium extraction system, which will have to rely on different techniques than envisioned for other LMs such as PbLi, Sn, and SnLi, which have a much lower tritium solubility than lithium. Development of such extraction systems is significant research and development needed prior to deployment of lithium PFCs.