ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
M. E. Rensink, T. D. Rognlien, C. E. Kessel
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 959-972
Technical Paper | doi.org/10.1080/15361055.2019.1643686
Articles are hosted by Taylor and Francis Online.
The viability of using liquid-lithium walls for the divertor and main chamber surfaces for a Fusion Nuclear Science Facility (FNSF) is analyzed from the point of view of the edge-plasma region that separates the hot core plasma from the surrounding material walls. The edge plasma is modeled by the UEDGE two-dimensional multifluid transport code that evolves equations for the density, momentum, and temperature of a 50%/50% mixture of deuterium-tritium (DT) ions, impurity ions, and electrons. Neutral DT and impurity gases are represented by neutral fluid equations. The primary inputs from the FNSF design are the magnetic configuration, plasma-facing-surface locations, core plasma exhaust power, and core boundary DT ion density. Lithium sources and sinks due to evaporation and condensation on the plasma-facing surfaces are parameters. The results show that a highly radiating divertor plasma, detached from the divertor plates, can be formed where >90% of the exhaust power is radiated by lithium with a broad deposition profile on plasma-facing surfaces that yields peak heat fluxes in the range of 2 MW/m2. The detached configuration is dominated by lithium plasma in the divertor and by hydrogen plasma upstream adjacent to the core boundary. A nonnegligible low level of lithium is found upstream at the outer midplane, typically in the range of 3% to 20%, that represents a potential core DT fuel dilution problem. An important physical mechanism is the collisional thermal force acting between ion species that can push impurities upstream along the magnetic field lines. Results show that the effect of reduced DT recycling at lithium surfaces due to hydride formation does not significantly affect the stability and radiative efficiency of the lithium divertor.