ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Sergey Smolentsev, Thomas Rognlien, Mark Tillack, Lester Waganer, Charles Kessel
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 939-958
Technical Paper | doi.org/10.1080/15361055.2019.1610649
Articles are hosted by Taylor and Francis Online.
The Fusion Energy System Studies (FESS) Fusion Nuclear Science Facility (FNSF) project team in the United States is examining the use of liquid metals (LMs) for plasma-facing components (PFCs). Our approach has been to utilize an already established fusion design, FESS-FNSF, which is a tokamak-based machine with 518 MW fusion power, a 4.8-m major radius, a 1.2-m minor radius, and a machine average neutron wall loading of ~1 MW/m2. For this design, we propose a PFC concept that integrates a flowing LM first wall (FW) and an open-surface divertor. The flowing LM first removes the surface heat flux from the FW and then proceeds to the lower section of the vacuum chamber to form a large area LM surface for absorbing high peak surface heat flux in the divertor region. In pursuing the application of large open LM surfaces in the FNSF, two new computer codes have been developed and then applied to the analysis of free-surface magnetohydrodynamic flows and heat transfer, including fast thin flowing liquid layers over the solid FW (liquid wall), a tublike divertor, and a fast flow divertor. The analysis is aimed at optimization of the liquid wall design by matching certain proposed design criteria and also at evaluation of the maximum heat fluxes, using liquid lithium (Li) as a working fluid. It was demonstrated that the flowing Li FW (at ~2 cm and ~10 m/s) can tolerate a surface heat flux of ~1 MW/m2, while the open-surface Li divertor can remove a maximum high peak heat flux of 10 MW/m2. The paper also focuses on the underlying science. One such example is the evaluation and characterization of heat transfer mechanisms and heat transfer intensification in the tublike Li divertor.