ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. A. Musa, D. S. Lee, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 879-885
Technical Paper | doi.org/10.1080/15361055.2019.1643683
Articles are hosted by Taylor and Francis Online.
The Georgia Institute of Technology group has performed studies to characterize the thermal hydraulics of a single “finger” module of the helium-cooled modular divertor with multiple jets (HEMJ) proposed for long-pulse magnetic fusion reactors in a helium (He) loop designed with maximum mass flow rate of 10 g/s. However, testing divertor modules at prototypical heat fluxes and temperatures remains an engineering challenge. A new larger helium loop with a maximum mass flow rate of 100 g/s, suitable for evaluating helium-cooled divertors with larger surface areas such as a nine-finger HEMJ module, is currently being constructed. This work presents an experimental validation of a numerical model exploring the applicability of the “reversed heat flux approach,” which cools (versus heats) the plasma-facing surface of the divertor module to evaluate the helium-side heat transfer coefficient (HTC). The approach is to be used for performance evaluation of single and multiple modules of HEMJ in existing and future large helium loops.
A cooling facility for producing a jet of water with a maximum mass flow rate of 1.4 kg/s at a maximum pressure of 0.4 MPa and temperature of 295 K (Re = 2.2 × 105) is described. Numerical and experimental results are presented for the heat flux and average helium impingement surface temperature over a range of water flow rates (0.5 to 1.4 kg/s) for heat fluxes as high as 5 MW/m2.
The numerical model suggests that the HTC of the water impingement surface is comparable to or greater than that of the helium impingement surface. For given helium and water temperatures, the heat flux values are generally limited by conduction across the outer shell. These initial studies provide guidance on extending this approach to estimating the thermal-hydraulic performance of larger divertor module designs while reducing the challenges associated with studying such designs in the normal heating configuration at their extremely high prototypical temperatures and incident heat fluxes.