ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2023 ANS Winter Conference and Expo
November 12–15, 2023
Washington, D.C.|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
October 2023
Nuclear Technology
Fusion Science and Technology
Latest News
MARVEL prototype “fired up” as testing gets underway
While initial operation of MARVEL, a tiny microreactor that will be installed and operated inside Idaho National Laboratory’s Transient Reactor Test (TREAT) Facility, might not occur until 2025, testing of a nonnuclear prototype is now under way at the New Freedom, Pa., manufacturing facility of Creative Engineers, Inc. (CEI). The Department of Energy announced the start of prototype testing on September 20.
Wenping Wang, Andrei Khodak, Irving Zatz, Alex Nagy, Peter Titus
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 828-834
Technical Paper | doi.org/10.1080/15361055.2019.1609822
Articles are hosted by Taylor and Francis Online.
The absolute collimator currently in service at the DIII-D NB injection system has experienced localized melting and damage. As part of the DIII-D 210-deg beamline co-counter conversion, a new absolute collimator was needed, and the opportunity to resolve melting was found on the off-axis beamline configuration. The pulsed high heat flux and uneven distribution of the heat loads required the aperture surface to be axially extended to spread out and reduce the surface heat flux. Geometric sculpting of the absolute collimator aperture based on the baseline dimension was performed using ANSYS CFX software. The reshaped absolute collimator aperture surface reduces the impinged heat flux to below ~4 MW/m2. Two interchangeable inserts are designed to occupy the high heat flux region for mitigating the thermal-induced stresses. The design achieves the objective of 6-s pulse lengths with 10-min repetition rates using the original peripheral conduit cooling system in the new collimator with minor changes.