ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Joseph R. Petrella, Jr., Michael J. D’Agostino, Mark Cropper, Jessica Guttenfelder
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 810-814
Technical Paper | doi.org/10.1080/15361055.2019.1622989
Articles are hosted by Taylor and Francis Online.
An electrical insulation web winding and optical inspection system has been developed to provide semiautomatic material handling and machine vision inspection of composite electromagnet coil insulation materials. Composite electrical insulation for electromagnet conductor insulation typically comprises a nonconductive woven filler (typically S-Glass), nonconductive film (typically Kapton®), and fixating resin. Prior to the subject system, the stock woven filler and film used to assemble the composite structure were inspected manually for dimensional and foreign matter presence, which did not provide 100% inspection. The subject system features a web handling reel-to-reel transfer mechanism that includes an open-loop web positional alignment device to maintain the web centerline position. A machine vision system is used to optically inspect passing web materials for dimensional defects and foreign materials. This system is capable of inspection of single web woven filler material and/or colaminated woven filler material and nonconductive film. A detected defect automatically terminates web movement, generates an alarm, and records images of the defects on a media storage device. Prototype material inspections performed by the subject machine on approximately 21 567 m (70 759 ft) of material detected 174 pieces of debris.