ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Joseph R. Petrella, Jr., Michael J. D’Agostino, Mark Cropper, Jessica Guttenfelder
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 810-814
Technical Paper | doi.org/10.1080/15361055.2019.1622989
Articles are hosted by Taylor and Francis Online.
An electrical insulation web winding and optical inspection system has been developed to provide semiautomatic material handling and machine vision inspection of composite electromagnet coil insulation materials. Composite electrical insulation for electromagnet conductor insulation typically comprises a nonconductive woven filler (typically S-Glass), nonconductive film (typically Kapton®), and fixating resin. Prior to the subject system, the stock woven filler and film used to assemble the composite structure were inspected manually for dimensional and foreign matter presence, which did not provide 100% inspection. The subject system features a web handling reel-to-reel transfer mechanism that includes an open-loop web positional alignment device to maintain the web centerline position. A machine vision system is used to optically inspect passing web materials for dimensional defects and foreign materials. This system is capable of inspection of single web woven filler material and/or colaminated woven filler material and nonconductive film. A detected defect automatically terminates web movement, generates an alarm, and records images of the defects on a media storage device. Prototype material inspections performed by the subject machine on approximately 21 567 m (70 759 ft) of material detected 174 pieces of debris.