ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Jason Wilson, James Becnel, David Demange, Bernice Rogers
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 802-809
Technical Paper | doi.org/10.1080/15361055.2019.1629249
Articles are hosted by Taylor and Francis Online.
The tokamak exhaust processing (TEP) system performs chemical separations on ITER fuel cycle process streams. TEP recovers hydrogen isotopes (Q2) from impurities such as argon, nitrogen, tritiated water (Q2O), tritiated ammonia (NQ3), and tritiated hydrocarbons such as methane (CQ4). TEP sends the hydrogen isotopes for subsequent processing to the isotope separation system or the storage and delivery system. At the same time, an impurity gas stream of extremely low tritium content (less than 8.88 TBq of tritium per day) is produced and sent to the detritiation system (DS). To accomplish the separation, the major hydrogen processing subsystems within TEP are hydrogen-like processing (HLP) and air-like processing/water-like processing (ALP/WLP). (Hydrogen-like gases are Q2, He, and Ne; air-like gases are Ar, O2, N2, O2, and CQ4; and water-like gases are Q2O and NQ3). The main processing equipment used for the HLP is a series of palladium-silver permeators (PMs) with ALP/WLP using a series of Palladium Membrane Reactors (PMRs). Aspen Dynamics is the primary tool for verifying system performance of the TEP design. Aspen Dynamics is a commercial, equation-based simulation package for chemical processing. The software enables the user to develop a process model from predefined unit-operation models or construct its own unique unit-operations model. Verification of the TEP simulation model to experimental data was achieved during the TEP conceptual design. The designs for the TEP HLP and ALP/WLP subsystems are examined for the updated gas inputs in terms of compositions and flow rates. The TEP simulation is used to predict tritium output of the TEP processing subsystems This paper describes how the Aspen model of the equipment was improved and used to size the equipment (PMs and PMRs) to process the various gas streams and maintain the discharge to DS to below the limit.