ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2023 ANS Winter Conference and Expo
November 12–15, 2023
Washington, D.C.|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
October 2023
Nuclear Technology
Fusion Science and Technology
Latest News
Environmental regulator gives nod to plans for first Polish nuclear plant
Poland’s General Directorate for Environmental Protection (GDOŚ) has given its imprimatur to the Central European nation’s plan to build and operate its first nuclear power facility, state-owned utility Polskie Elektrownie Jądrowe announced last Friday.
PEJ, which submitted its environmental impact report for the proposed project to GDOŚ in March 2022, called the decision “a key permit obtained in the investment process, because subsequent administrative approvals, including the decision to determine the location of the investment and the building permit, must comply with the arrangements and conditions contained in the decision on environmental conditions.”
Robert Lunsford, Roger Raman, A. Brooks, R. A. Ellis, W.-S. Lay
Fusion Science and Technology | Volume 75 | Number 8 | November 2019 | Pages 767-774
Technical Paper | doi.org/10.1080/15361055.2019.1629246
Articles are hosted by Taylor and Francis Online.
The electromagnetic particle injector (EPI) concept is advanced through the simulation of ablatant deposition into ITER H-mode discharges with calculations showing penetration past the H-mode pedestal for a range of injection velocities and granule sizes concurrent with the requirements of disruption mitigation. As discharge stored energy increases in future fusion devices such as ITER, control and handling of disruption events become critical issues. An unmitigated disruption could lead to failure of the plasma-facing components resulting in financially and politically costly repairs. Methods to facilitate the quench of an unstable high-current discharge are required. With the onset warning time for some ITER disruption events estimated to be less than 10 ms, a disruption mitigation system needs to be considered that operates at injection speeds greater than gaseous sound speeds. Such an actuator could then serve as a means to augment presently planned pneumatic injection systems. The EPI uses a railgun concept whereby a radiative payload is delivered into the discharge by means of the J×B forces generated by an external current pulse, allowing for injection velocities in excess of 1 km/s. The present status of the EPI project is outlined, including the addition of boost magnetic coils. These coils augment the self-generated railgun magnetic field and thus provide a more efficient acceleration of the payload. The coils and the holder designed to constrain them have been modeled with the ANSYS code to ensure structural integrity through the range of operational coil currents.