ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Peter Dugan, and the NSTX-U Recovery Team
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 740-746
Technical Paper | doi.org/10.1080/15361055.2019.1643685
Articles are hosted by Taylor and Francis Online.
This paper addresses the systems engineering (SE) processes used for the National Spherical Torus Experiment-Upgrade (NSTX-U). It focuses on SE across the life cycle of the system, including requirements management, interface control, risk management, integration, and verification/validation. This is particularly significant as NSTX-U includes new systems and an existing plant and reused systems from past projects such as the Tokamak Fusion Test Reactor (TFTR). The implementation of SE provides the ability to control complexity, improve communications, identify risks early, and prevent defects. Systems engineering principles are applied to enhance the integration while maintaining relevance in plasma research. These principles define a deliberate process to identify and resolve issues early in the development cycle, thus reducing risks and optimizing outputs. They also establish relationships to gather knowledge from experts and stakeholders, supporting the continued ability of NSTX-U in building and maintaining an operational system able to adapt to changing environments and emerging requirements.