ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Adrian S. Sabau, Kazutoshi Tokunaga, Michael G. Littleton, James O. Kiggans, Jr., Charles R. Schaich, Ralph B. Dinwiddie, Daniel T. Moore, Yoshio Ueda, Yutai Katoh
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 690-701
Technical Paper | doi.org/10.1080/15361055.2019.1623571
Articles are hosted by Taylor and Francis Online.
Assessing the effect of neutron irradiation of plasma-facing materials has been challenging due to both the technical and radiological challenges involved. In an effort to address the radiological challenges, a facility was developed to conduct high heat flux testing (HHFT) of inherently small samples of neutron-irradiated materials. A new line-focus reflector was designed and fabricated at Oak Ridge National Laboratory for a plasma-arc lamp (PAL) to attain a source heat flux of 12 MW/m2. The new reflector was fabricated with two ports for monitoring specimen condition during HHFT. At the same operational conditions for PAL, the absorbed heat flux in tungsten was increased from 1.39 MW/m2 with the uniform irradiance reflector to 5.12 MW/m2 for the line-focus reflector. This fourfold increase in the heat flux, at the same PAL electrode lifetimes, enabled cost-effective facility operation for a high number of cyclic high heat flux tests. Specifically, the test section is confined to a hemispherical dome, and specimens are bolted directly to a water-cooled copper alloy rod. Temperature measurement in the PAL facility was a main challenge due to a limited line of sight. For the first time in a PAL facility operating at high heat fluxes, the specimen surface temperature was directly measured during HHFT with a pyrometer. The HHFT data, which were obtained in this upgraded PAL facility, demonstrated the facility readiness for irradiated materials.