ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
Adrian S. Sabau, Kazutoshi Tokunaga, Michael G. Littleton, James O. Kiggans, Jr., Charles R. Schaich, Ralph B. Dinwiddie, Daniel T. Moore, Yoshio Ueda, Yutai Katoh
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 690-701
Technical Paper | doi.org/10.1080/15361055.2019.1623571
Articles are hosted by Taylor and Francis Online.
Assessing the effect of neutron irradiation of plasma-facing materials has been challenging due to both the technical and radiological challenges involved. In an effort to address the radiological challenges, a facility was developed to conduct high heat flux testing (HHFT) of inherently small samples of neutron-irradiated materials. A new line-focus reflector was designed and fabricated at Oak Ridge National Laboratory for a plasma-arc lamp (PAL) to attain a source heat flux of 12 MW/m2. The new reflector was fabricated with two ports for monitoring specimen condition during HHFT. At the same operational conditions for PAL, the absorbed heat flux in tungsten was increased from 1.39 MW/m2 with the uniform irradiance reflector to 5.12 MW/m2 for the line-focus reflector. This fourfold increase in the heat flux, at the same PAL electrode lifetimes, enabled cost-effective facility operation for a high number of cyclic high heat flux tests. Specifically, the test section is confined to a hemispherical dome, and specimens are bolted directly to a water-cooled copper alloy rod. Temperature measurement in the PAL facility was a main challenge due to a limited line of sight. For the first time in a PAL facility operating at high heat fluxes, the specimen surface temperature was directly measured during HHFT with a pyrometer. The HHFT data, which were obtained in this upgraded PAL facility, demonstrated the facility readiness for irradiated materials.