ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Kai Masuda, Ryosuke Kashima, Mahmoud A. Bakr
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 608-613
Technical Paper | doi.org/10.1080/15361055.2019.1610292
Articles are hosted by Taylor and Francis Online.
This paper proposes a Langmuir probe–based diagnostics for plasma parameters inside gridded cathodes at high bias potentials in inertial electrostatic confinement devices. As the first step for the proof of concept, floating potential profiles were measured in deuterium and helium plasmas in a glow-discharge mode. The measurements with fusion-relevant cathode voltages up to 55 kV were carried out successfully. The results revealed that the positive potential buildup at the center ranges from 5% to 8% of the applied bias voltage to the gridded cathode, which is found to be much smaller than those in earlier works under cathode voltages lower than 5 kV. It was also shown that the floating potential profile is different significantly between deuterium and helium discharge plasmas.