The sheared-flow-stabilized (SFS) Z-pinch is a promising confinement concept for the development of a compact fusion reactor. The Z-pinch has been theoretically and experimentally shown to be stable to magnetohydrodynamic modes when sufficient radial shear of the axial flow is present. At the University of Washington, the Fusion Z-pinch Experiment (FuZE) research project examines scaling the SFS Z-pinch toward fusion conditions. The FuZE device produces long-duration, 50-cm-long pinches with measured ion and electron temperatures over 1 keV and number densities greater than cm. Plasma properties are measured with a diagnostic suite that includes magnetic field probes, heterodyne quadrature interferometry, digital holographic interferometry, ion-Doppler spectroscopy, and fast framing photography. Neutrons are produced in the FuZE device when deuterium is injected along with the normal hydrogen or helium fueling species. Neutron generation is diagnosed using plastic scintillator detectors. The neutron production is sustained for 5 to 8 μs, thousands of times longer than the static Z-pinch instability growth time. Measured neutron production is consistent with calculated theoretical values for thermonuclear yield at the observed plasma temperatures and scales with the square of the deuterium concentration. A preliminary reactor concept is designed to incorporate flowing liquid metal walls, which would serve as an electrode, a heat transfer fluid, a radiological shield, and a breeding blanket. Using a liquid metal wall could address several unresolved material and technology issues in existing fusion reactor designs.