ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Eleanor G. Forbes, Uri Shumlak, Harry S. McLean, Brian A. Nelson, Elliot L. Claveau, Raymond P. Golingo, Drew P. Higginson, James M. Mitrani, Anton D. Stepanov, Kurt K. Tummel, Tobin R. Weber, Yue Zhang
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 599-607
Technical Paper | doi.org/10.1080/15361055.2019.1622971
Articles are hosted by Taylor and Francis Online.
The sheared-flow-stabilized (SFS) Z-pinch is a promising confinement concept for the development of a compact fusion reactor. The Z-pinch has been theoretically and experimentally shown to be stable to magnetohydrodynamic modes when sufficient radial shear of the axial flow is present. At the University of Washington, the Fusion Z-pinch Experiment (FuZE) research project examines scaling the SFS Z-pinch toward fusion conditions. The FuZE device produces long-duration, 50-cm-long pinches with measured ion and electron temperatures over 1 keV and number densities greater than cm. Plasma properties are measured with a diagnostic suite that includes magnetic field probes, heterodyne quadrature interferometry, digital holographic interferometry, ion-Doppler spectroscopy, and fast framing photography. Neutrons are produced in the FuZE device when deuterium is injected along with the normal hydrogen or helium fueling species. Neutron generation is diagnosed using plastic scintillator detectors. The neutron production is sustained for 5 to 8 μs, thousands of times longer than the static Z-pinch instability growth time. Measured neutron production is consistent with calculated theoretical values for thermonuclear yield at the observed plasma temperatures and scales with the square of the deuterium concentration. A preliminary reactor concept is designed to incorporate flowing liquid metal walls, which would serve as an electrode, a heat transfer fluid, a radiological shield, and a breeding blanket. Using a liquid metal wall could address several unresolved material and technology issues in existing fusion reactor designs.