ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Y. C. Francis Thio, Scott C. Hsu, F. Douglas Witherspoon, Edward Cruz, Andrew Case, Samuel Langendorf, Kevin Yates, John Dunn, Jason Cassibry, Roman Samulyak, Peter Stoltz, Samuel J. Brockington, Ajoke Williams, Marco Luna, Robert Becker, Adam Cook
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 581-598
Technical Paper | doi.org/10.1080/15361055.2019.1598736
Articles are hosted by Taylor and Francis Online.
Plasma-jet-driven magneto-inertial fusion (PJMIF) is the only embodiment of magneto-inertial fusion that has the unique combination of stand-off implosion and high implosion velocity (50 to 150 km/s). It uses inexpensive plasma guns for all plasma formation and implosion and has potential for a relatively high repetition rate from 1 to 2 Hz. Its configuration is compatible with the use of a thick liquid wall that doubles as a tritium breeding blanket as well as a coolant for extracting the heat out of the fusion reactor. The PJMIF operational parameter-space allows for the possibility of using a sufficiently dense target plasma for the target plasma to have a high . If such a high- plasma could be realized, it would help to suppress micro and magnetohydrodynamic instabilities, giving its target plasma classical transport and energy confinement characteristics. Its open geometry and moderate time and spatial scales provide convenient diagnostics access. Diagnostics accessibility, high shot rate, and low cost per shot should enable quick resolution of technical issues during development, thus the potential for enabling rapid research and development of PJMIF. There are a number of challenges for PJMIF, however, including being at a very early stage of development, developing the required plasma guns, dealing with potential liner nonuniformities, clearing the chamber of residual high-Z gas between shots, and developing the repetitive pulsed-power component technologies. Over the last 3 years, the development of the Plasma Liner Formation Experiment (PLX-) has been undertaken to explore the physics and demonstrate the formation of a spherical liner by the merging of a spherical array of plasma jets. Two- and three-jet merging experiments have been conducted to study the interactions of the jets. Six- and seven-jet experiments have been performed to form a piece of the plasma liner. A brief status report on this development is provided in this paper.