ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
Marcos X. Navarro, Marziyeh Zamiri, Martin E. Griswold, John F. Santarius, Gerald L. Kulcinski, Max Lagally, Toshiki Tajima
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 542-550
Technical Paper | doi.org/10.1080/15361055.2019.1610317
Articles are hosted by Taylor and Francis Online.
This research explores the performance of graphene as a coating for plasma-facing components (PFCs) in a nuclear fusion environment. Our recent studies have shown that graphene can act as a resistant layer against plasma exposure and ion bombardment. PFCs tend to develop surface morphologies that lead to mass loss of the wall material, potentially diminishing their lifetime and degrading plasma performance. We present a characterization of graphene-coated samples of W irradiated in the C-2W divertor. Energy analyzers were used to determine average ion fluxes to the samples on the order of 1018 D+/cm2. Two samples were exposed over 1210 plasma discharges. Raman spectroscopy showed that slow ions (30 < E < 100 eV) interact strongly with the graphene, introducing vacancies into the membrane (ID/IG ~ 0.7), making it possible to assess the limiting factors on such a coating’s lifetime. We also found that graphene slows down impurity deposition on the material surfaces due to graphene’s stable configuration and low surface energy. This first attempt at testing the coating in a large-scale fusion experiment aims to expand the possible wall candidates for PFCs.