ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Matthew J. Jasica, Gerald L. Kulcinski, John F. Santarius
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 526-532
Technical Paper | doi.org/10.1080/15361055.2019.1602397
Articles are hosted by Taylor and Francis Online.
The ITER divertor will feature tungsten monoblocks as the plasma-facing component (PFC) that will be subject to extreme temperature and radiation environments. This paper reports the development of surface morphologies on tungsten under helium bombardment at high temperatures, which has important implications for safety, retention, and PFC erosion. Polycrystalline tungsten samples were implanted in the Dual Advanced Ion Simultaneous Implantation Experiment dual-beam ion implantation experiment at the University of Wisconsin-Madison with He-only and simultaneous He-D implantation at incidence angles of 55 deg, ion energies of 30 keV, and surface temperatures of 900°C to 1100°C. Morphologies resulting from angled incidence conditions differed from those produced under normal incidence bombardment at similar energy and temperature conditions in previous work. A variety of ordered and disordered morphologies dependent on grain orientation were observed for fluences up to 6 × 1018 He cm−2. These morphologies displayed dependencies on crystal orientation at low fluences and incident beam directions at higher fluences. These structures appeared, with variation, under both single-species He and mixed He-D implantations.