ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Nathan C. Reid, Lauren M. Garrison, Chase N. Taylor, Jean Paul Allain
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 510-519
Technical Paper | doi.org/10.1080/15361055.2019.1612659
Articles are hosted by Taylor and Francis Online.
In reactor-relevant fusion divertor conditions, tungsten (W) will be used as an armor material due to its excellent thermal properties. It will be exposed to impurities from numerous sources, including ion implantation and mixing, neutron transmutation, low-Z plasma-facing-component (PFC) redeposition and codeposition of deuterium and tritium fuel, and trapped helium bubbles. The impurity plasma material–interaction effects are a concern because they can cause gradual degradation of the material and of plasma performance due to dust formation, fuel retention, and even changes to the thermal and mechanical properties of the W armor. It is crucial to measure the amount of impurities in W, and the glow discharge–optical emission spectroscopy (GD-OES) technique is exceptionally well suited for analysis of irradiated samples. GD-OES can measure a sample’s elemental composition by sputtering the surface of the sample, ionizing the eroded material, and measuring the optical emission of the excited atoms. In order for the GD-OES technique to be applied to neutron-irradiated tungsten samples, a mounting system for miniature samples was designed. The sample mounting and centering procedure was successful in measuring the depth distribution of control W and W alloy sample elemental concentrations. These control depth spectra will be used as elemental references for postirradiated samples. The residence time of surface layers was measured, a comparison of signals from different anodes was completed, and the influence of initial surface roughness or nonuniformity was understood. The depth distribution of an arc-welded W-0.4% rhenium (Re) alloy was measured to have a stable Re signal that was distributed evenly in the W matrix. The methods developed here will allow for quantification of impurities and transmutation amounts in neutron-irradiated W. GD-OES is a powerful tool but requires calibration and careful optimization of the parameters to obtain meaningful results.