ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
July 2022
Fusion Science and Technology
Latest News
Pact signed on potential BWRX-300 deployment in Saskatchewan
Ontario-based GEH SMR Technologies Canada Ltd. and the Saskatchewan Industrial and Mining Suppliers Association (SIMSA) announced yesterday the signing of a memorandum of understanding focused on the potential deployment of the BWRX-300 small modular reactor in Saskatchewan.
The MOU calls for engaging with local suppliers to maximize the role of the Saskatchewan supply chain in the nuclear energy industry.
Lauren M. Garrison, Yutai Katoh, Josina W. Geringer, Masafumi Akiyoshi, Xiang Chen, Makoto Fukuda, Akira Hasegawa, Tatsuya Hinoki, Xunxiang Hu, Takaaki Koyanagi, Eric Lang, Michael McAlister, Joel McDuffee, Takeshi Miyazawa, Chad Parish, Emily Proehl, Nathan Reid, Janet Robertson, Hsin Wang
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 499-509
Technical Paper | dx.doi.org/10.1080/15361055.2019.1602390
Articles are hosted by Taylor and Francis Online.
The United States and Japan have collaborated on fusion materials research in a series of agreements reaching back to 1981. The PHENIX collaboration is the latest U.S.-Japan project which spans 2013 to 2019 and has the goal of assessing technical feasibility of tungsten-based, helium-cooled plasma-facing component concepts for a demonstration fusion power reactor (DEMO). Task 2 within the PHENIX project is focused on evaluating the neutron irradiation effects in tungsten. For tungsten, the transmutation to Re and Os is at least as important to determining its properties after irradiation as the displacement damage, and the transmutation rate depends on the energy spectrum of the reactor. A large-scale, instrumented irradiation capsule with thermal neutron shielding to better mimic fusion conditions was irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. The tungsten specimens were irradiated in different temperature zones between 500°C and 1200°C to doses of ~0.2 to 0.7 displacements per atom. More than 20 varieties of pure tungsten and tungsten alloys were included in the irradiation, and they were evaluated in the 3025E hot-cell facility and at the Low Activation Materials Development and Analysis Laboratory. The elevated temperature tensile, fracture toughness, hardness, thermal conductivity, electrical resistivity, density, elemental composition, and microstructure properties of the irradiated materials are being collected. This paper overviews the experimental design, specimen matrix, and the initial results of postirradiation examinations.