ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Lauren M. Garrison, Yutai Katoh, Josina W. Geringer, Masafumi Akiyoshi, Xiang Chen, Makoto Fukuda, Akira Hasegawa, Tatsuya Hinoki, Xunxiang Hu, Takaaki Koyanagi, Eric Lang, Michael McAlister, Joel McDuffee, Takeshi Miyazawa, Chad Parish, Emily Proehl, Nathan Reid, Janet Robertson, Hsin Wang
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 499-509
Technical Paper | doi.org/10.1080/15361055.2019.1602390
Articles are hosted by Taylor and Francis Online.
The United States and Japan have collaborated on fusion materials research in a series of agreements reaching back to 1981. The PHENIX collaboration is the latest U.S.-Japan project which spans 2013 to 2019 and has the goal of assessing technical feasibility of tungsten-based, helium-cooled plasma-facing component concepts for a demonstration fusion power reactor (DEMO). Task 2 within the PHENIX project is focused on evaluating the neutron irradiation effects in tungsten. For tungsten, the transmutation to Re and Os is at least as important to determining its properties after irradiation as the displacement damage, and the transmutation rate depends on the energy spectrum of the reactor. A large-scale, instrumented irradiation capsule with thermal neutron shielding to better mimic fusion conditions was irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. The tungsten specimens were irradiated in different temperature zones between 500°C and 1200°C to doses of ~0.2 to 0.7 displacements per atom. More than 20 varieties of pure tungsten and tungsten alloys were included in the irradiation, and they were evaluated in the 3025E hot-cell facility and at the Low Activation Materials Development and Analysis Laboratory. The elevated temperature tensile, fracture toughness, hardness, thermal conductivity, electrical resistivity, density, elemental composition, and microstructure properties of the irradiated materials are being collected. This paper overviews the experimental design, specimen matrix, and the initial results of postirradiation examinations.