ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Jonah D. Duran, Ezekial A. Unterberg, Mike P. Zach, William R. Wampler, Dmitry L. Rudakov, David C. Donovan
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 493-498
Technical Paper | doi.org/10.1080/15361055.2019.1610316
Articles are hosted by Taylor and Francis Online.
High-Z impurities released from plasma-material interactions have been shown to limit the performance of fusion plasmas, and understanding these impurity transport mechanisms throughout the plasma scrape-off layer is a major challenge. Presented herein is a study of tungsten (W) erosion and transport by uniquely measuring absolute quantities of isotopic W in order to determine the source of natural and enriched 182W isotopes that have traveled throughout the tokamak discharges on the DIII-D National Fusion Facility at General Atomics. Two primary analysis methods have been implemented to characterize this W on graphite collector probes that were inserted into DIII-D’s outboard midplane. Results from experiments using Rutherford backscattering spectrometry (RBS) have measured W particle areal densities down the centerline of the probes as high as 6E14 atoms/cm2 with a detection limit of 1E12 atoms/cm2. Laser ablation inductively coupled plasma mass spectrometry (LAMS) has confirmed the elemental trends found with RBS and has provided additional insight into collector probe surface profiles. Two-dimensional elemental and isotopic maps from LAMS are used to reveal new collector probe features and further refine the source of collected W. Variations in isotopic profiles and total W content are coupled to (a) the face of the probe being analyzed, (b) the dimensions of the probe, and (c) the plasma pulse parameters that were used during probe exposure. These results provide one-of-a-kind empirical evidence that is now being utilized for validation of tokamak impurity transport through theoretical models and in codes such as 3D-LIM and OEDGE.