ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
July 2022
Fusion Science and Technology
Latest News
Pact signed on potential BWRX-300 deployment in Saskatchewan
Ontario-based GEH SMR Technologies Canada Ltd. and the Saskatchewan Industrial and Mining Suppliers Association (SIMSA) announced yesterday the signing of a memorandum of understanding focused on the potential deployment of the BWRX-300 small modular reactor in Saskatchewan.
The MOU calls for engaging with local suppliers to maximize the role of the Saskatchewan supply chain in the nuclear energy industry.
Mahmoud Bakr, Kai Masuda, Masaya Yoshida
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 479-486
Technical Paper | dx.doi.org/10.1080/15361055.2019.1609821
Articles are hosted by Taylor and Francis Online.
Neutrons are generated in the inertial electrostatic confinement (IEC) device through different types of fusion reactions of the fuel gas such as deuterium (D) and tritium (T). Fusion in the IEC device takes place via various kinds of collisions like beam-beam collision, beam–background gas collision, and beam-target collision on the electrode surfaces. Two identical anodes for the IEC chamber made from titanium (Ti) and SUS-316L stainless steel (SS) are used to study the effect of the anode material on the neutron production rate (NPR). The NPRs from the chambers are measured at different applied powers. The achieved NPRs, so far, for Ti and SS are 8.9 × 107 n/s at 5.25 kW (75 kV, 70 mA) and 2.8 × 107 n/s at 10.5 kW (70 kV, 150 mA), respectively. The normalized NPR (NPR rated to the cathode current) from the Ti chamber is three to four times higher than that from the SS chamber. We observed a better NPR for the Ti chamber compared with the SS chamber. This is explained by the fusion reaction occurring between the neutrals and D atoms adsorbed/embedded on the inner surface of the anode. Moreover, the Ti chamber shows an improvement of the NPR as a function of the operating time ranging from 1.5 to 1.75 after 25 h from the first discharge.