ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
July 2022
Fusion Science and Technology
Latest News
Pact signed on potential BWRX-300 deployment in Saskatchewan
Ontario-based GEH SMR Technologies Canada Ltd. and the Saskatchewan Industrial and Mining Suppliers Association (SIMSA) announced yesterday the signing of a memorandum of understanding focused on the potential deployment of the BWRX-300 small modular reactor in Saskatchewan.
The MOU calls for engaging with local suppliers to maximize the role of the Saskatchewan supply chain in the nuclear energy industry.
Seonghee Hong, Myunghyun Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 466-478
Technical Paper | dx.doi.org/10.1080/15361055.2019.1609820
Articles are hosted by Taylor and Francis Online.
To enhance the practical application of a fusion-driven subcritical reactor, a system with constant fusion power by online feeding of molten salt fuel was designed. The system satisfies multiple purposes including waste transmutation, tritium breeding (TB), and energy multiplication (EM) through constant fusion power. All neutronic calculations were performed by SERPENT2.1.29 with the ENDF/B-VII.0 neutron cross-section library in order to simulate the online-feeding process.
A constant k-eff is maintained by the amount of the feeding being larger than the amount of the removed fission products. However, system performance is significantly improved by just reducting the reactivity swing with the feeding. Compared to a once-through cycle (OTC), the performance of TB and EM is significantly improved as the feeding rate increases. However, there is no deep burning effect like the OTC for waste transmutation.
The performance of waste transmutation is changed in the feeding scenarios. For the scenario with a high plutonium ratio, transmutation with plutonium is increased. On the other hand, for the feeding scenario with a high minor actinide ratio, transuranic waste is burned. However, the transmutation performance is degraded due to a low fission-to-capture ratio.