ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Seonghee Hong, Myunghyun Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 466-478
Technical Paper | doi.org/10.1080/15361055.2019.1609820
Articles are hosted by Taylor and Francis Online.
To enhance the practical application of a fusion-driven subcritical reactor, a system with constant fusion power by online feeding of molten salt fuel was designed. The system satisfies multiple purposes including waste transmutation, tritium breeding (TB), and energy multiplication (EM) through constant fusion power. All neutronic calculations were performed by SERPENT2.1.29 with the ENDF/B-VII.0 neutron cross-section library in order to simulate the online-feeding process.
A constant k-eff is maintained by the amount of the feeding being larger than the amount of the removed fission products. However, system performance is significantly improved by just reducting the reactivity swing with the feeding. Compared to a once-through cycle (OTC), the performance of TB and EM is significantly improved as the feeding rate increases. However, there is no deep burning effect like the OTC for waste transmutation.
The performance of waste transmutation is changed in the feeding scenarios. For the scenario with a high plutonium ratio, transmutation with plutonium is increased. On the other hand, for the feeding scenario with a high minor actinide ratio, transuranic waste is burned. However, the transmutation performance is degraded due to a low fission-to-capture ratio.