ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Katherine Royston, Georgeta Radulescu, Walter Van Hove, Stephen Wilson, Seokho Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 458-465
Technical Paper | doi.org/10.1080/15361055.2019.1606519
Articles are hosted by Taylor and Francis Online.
The ITER fusion reactor is being built to demonstrate the feasibility of fusion power and will be the largest tokamak in the world. The tokamak cooling water system (TCWS) will extract the heat generated during operations and includes large amounts of piping and equipment such as pumps and heat exchangers (HXs) that are located in a large shielded region on level L3 of the tokamak building. During operation, water in the TCWS will be activated by plasma neutrons and then flow into this shielded region. The activated coolant will in turn activate the steel in the TCWS during operation and result in an activation gamma source and radiation responses that must be assessed to inform equipment selection and maintenance schedules.
The activation of materials in the shielded region of level L3 was assessed at several decay times and for different equipment options using the Oak Ridge National Laboratory (ORNL) shutdown dose rate (SDDR) code suite. The ORNL SDDR code suite implements the rigorous two-step method using the Multi-Step Consistent Adjoint-Driven Importance Sampling (MS-CADIS) method to create effective neutron variance reduction parameters for the photon response of interest. Two different HX designs, shell and tube and shell and plate, were considered, as well as the impact of cobalt impurities in steel equipment.