ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Georgeta Radulescu, Katherine E. Royston, Stephen C. Wilson, Walter Van Hove, David E. Williamson, Seokho H. Kim
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 452-457
Technical Paper | doi.org/10.1080/15361055.2019.1589205
Articles are hosted by Taylor and Francis Online.
Heat generated in the ITER fusion reactor is deposited in the tokamak vacuum vessel, in-vessel components, and in the components of the neutral beam injector during plasma operations and during subsequent decay of activation products. This heat is managed by the tokamak cooling water system (TCWS). The stainless steel material in the integrated loop of blanket edge-localized mode vertical stabilization coils and divertor (IBED) components (e.g., piping, heat exchangers (HXs), and pumps) contains activation sources because of its exposure primarily to neutron radiation from the decay of 17N, which is a short-lived radionuclide produced by neutron capture reactions with oxygen nuclei in the IBED primary heat transfer system (PHTS) cooling water during plasma operations. A detailed geometry model of the IBED stainless steel components and neutron radiation sources is required for an accurate assessment of the gamma activation sources on level 3 of the tokamak building. In the baseline design, each of the eight IBED PHTS cooling trains has two shell-and-tube heat exchangers (HXs) connected in series. Because these HXs are very large and contain a large amount of radioactive water, the possibility of using compact HXs of the welded shell-and-plate type is under investigation. This paper presents two Monte Carlo N-Particle (MCNP) TCWS geometry models, one model for each HX type, along with the associated piping. These models were obtained by automatic geometry conversion from TCWS computer-aided design models. The TCWS geometry models and neutron source definitions were incorporated into a baseline MCNP model of the Tokamak Complex.