ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Lucas M. Rolison, Michael L. Fensin, Y. C. Francis Thio, Scott C. Hsu, Edward J. Cruz
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 438-451
Technical Paper | doi.org/10.1080/15361055.2019.1613140
Articles are hosted by Taylor and Francis Online.
We present neutronics calculations for a hypothetical fusion reactor based on the repetitively pulsed concept of plasma-jet-driven magneto-inertial fusion (PJMIF). A PJMIF reactor is envisioned to have a replaceable, 3-m-radius spherical metal first wall exposed to 14.1-MeV neutrons; a fast-flowing FLiBe liquid blanket (with thickness 0.75 m) behind the first wall serving as the primary coolant and tritium-breeding medium; and finally an outer structural spherical wall shielded by the blanket. Cylindrical penetrations through both walls and the flowing blanket allow for hundreds of plasma gun drivers to inject hypersonic plasma jets that form both the deuterium-tritium plasma target and high-Z spherically imploding plasma liner to compress the target. This research is the first to conduct Monte Carlo N-Particle (MCNP6.2) and CINDER2008 neutronics calculations relevant to the PJMIF reactor configuration, with the primary objectives of determining (1) the neutron flux as a function of blanket thickness in the blanket and key reactor components and (2) the tritium production rate in the liquid blanket. These results will be used to estimate other quantities of interest, such as first-wall and gun-electrode lifetimes based on displacements per atom (dpa) accumulation, optimum blanket thickness, activation level of the outer wall and xenon liner, and achievable tritium-breeding ratios. Energy-dependent flux tallies were used to calculate neutron flux inside the FLiBe blanket and outer wall, as well as the cylindrical ports where plasma guns are located. Tally multipliers of the flux in MCNP6.2 estimated tritium breeding ratio, dpa, and nuclear heating, while the depletion code CINDER2008 was used to compare tritium breeding ratios with MCNP6.2 and calculate activation of the outer wall and xenon liner. These calculations provide a baseline for blanket requirements necessary for power production in a PJMIF reactor.