ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Tim D. Bohm, Andrew Davis, Moataz S. Harb, Edward P. Marriott, Paul P. H. Wilson
Fusion Science and Technology | Volume 75 | Number 6 | August 2019 | Pages 429-437
Technical Paper | doi.org/10.1080/15361055.2019.1600930
Articles are hosted by Taylor and Francis Online.
The use of a liquid-metal (LM) plasma-facing component (LM-PFC) in fusion reactor designs has some advantages as well as some disadvantages as compared to traditional designs that use a solid plasma-facing wall. Neutronics analysis of these potential LM-PFC concepts is important in order to ensure that radiation limits are met and that system performance meets expectations.
A three-dimensional (3-D) neutronics analysis parametric study considering four LM first-wall (FW) candidates, (PbLi, Li, Sn, and SnLi) was performed with a thin (2.51-cm) LM-PFC design. The 3-D neutronics study used a fusion reactor based on the Fusion Energy Systems Study (FESS) Fusion Nuclear Science Facility (FNSF) (FESS-FNSF) that served as the baseline for comparison. FESS-FNSF is a deuterium-tritium–fueled tokamak with 518 MW of fusion power. A partially homogenized 3-D computer-aided-design model of the LM-PFC FNSF design was analyzed using the DAG-MCNP5 transport code.
The results show that all candidate LM designs are acceptable with 4% to 13% increases in the tritium breeding ratio compared to the baseline case. The peak displacements per atom at the FW decrease 2% to 15%. For all four LM designs examined, the magnet heating and fast neutron fluence are well below acceptable limits. Overall, the Li LM design is the best candidate from a neutronics perspective.